Skip to main content

Submitted for publication (in alphabetical order by author)

  1. K. S. Anand, E. M. Kolahdouz, B. E. Griffith, and C. M. Gallippi. IIM2FieldII: A Novel Approach to Pointwise 3D Validation of Ultrasound-Derived Wall Shear Stress Estimation Methods Using Real Human Carotid Plaque Geometries. Submitted
  2. A. Barrett, A. L. Fogelson, M. G. Forest, C. Gruninger, S. Lim, and B. E. Griffith. Flagellum pumping efficiency in shear-thinning viscoelastic fluids. Submitted (arXiv)
  3. M. Davey, C. Puelz, S. Rossi, M. A. Smith, D. R. Wells, G. Sturgeon, W. P. Segars, J. P. Vavalle, C. S. Peskin, and B. E. Griffith. Simulating cardiac fluid dynamics in the human heart. Submitted (arXiv)

Journal articles

  1. C. Gruninger, A. Barrett, F. Fang, M. G. Forest, and B. E. Griffith. Benchmarking immersed boundary models of viscoelastic flows. J Comput Phys, in press (accepted on 02/24/2024) (DOI, arXiv)
  2. K. Kim, A. P. S. Bhalla, and B. E. Griffith. An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure. J Comput Phys, 493:112466 (24 pages), 2023 (DOI, arXiv)
  3. E. M. Kolahdouz, D. R. Wells, S. Rossi, K. I. Aycock, B. A. Craven, and B. E. Griffith. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction. J Comput Phys, 488:112174 (28 pages), 2023 (DOI, arXiv)
  4. A. Barrett, J. A. Brown, M. A. Smith, A. Woodward, J. P. Vavalle, A. Kheradvar, B. E. Griffith, and A. L. Fogelson. A model of fluid-structure and biochemical interactions for applications to subclinical leaflet thrombosis. Int J Numer Meth Biomed Eng, 39(5):e3700 (19 pages), 2023 (DOI, arXiv)
  5. D. R. Wells, B. Vadala-Roth, J. H. Lee, and B. E. Griffith. A nodal immersed finite element-finite difference method. J Comput Phys, 477:111890 (29 pages), 2023 (DOI, arXiv)
  6. W. Y. Aw, C. Cho, H. Wang, A. H. Cooper, E. L. Doherty, D. Rocco, S. A. Huang, S. Kubik, C. P. Whitworth, R. Armstrong, A. J. Hickey, B. Griffith, M. L. Kutys, J. Blatt, and W. J. Polacheck. Microphysiological vascular malformation model reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation. Sci Adv, 9(7):eade8939 (16 pages), 2023 (DOI, bioRxiv)
  7. N. Thekkethil, S. Rossi, H. Gao, S. I. Heath Richardson, B. E. Griffith, and X. Y. Luo. A stabilized linear finite element method for anisotropic poroelastodynamics with application to cardiac perfusion. Comput Methods Appl Mech Eng, 405:115877 (32 pages), 2023 (DOI)
  8. Z. Lin, A. P. S. Bhalla, B. E. Griffith, Z. Seng, H. Li, D. Liang, and Y. Zhang. How swimming style affects schooling of two fish-like wavy hydrofoils. Ocean Eng, 268:113314 (25 pages), 2023 (DOI, arXiv)
  9. J. A. Brown, J. H. Lee, M. A. Smith, D. R. Wells, A. Barrett, C. Puelz, J. P. Vavalle, and B. E. Griffith. Patient-specific immersed finite element-difference model of transcatheter aortic valve replacement. Ann Biomed Eng, 51:103–116, 2023 (Open Access Publication, Supplemental Material, DOI, SharedIt)
  10. D. Lior, C. Puelz, C. Edwards, S. Molossi, B. E. Griffith, R. K. Birla, and C. G. Rusin. Semi-automated construction of patient-specific aortic valves from computed tomography images. Ann Biomed Eng, 51:189–199, 2023 (DOI, SharedIt)
  11. S. Rossi, L. Abdala, A. Woodward, J. P. Vavalle, C. S. Henriquez, and B. E. Griffith. Rule-based definitions of muscle bundles in patient-specific models of the left atrium. Front Physiol, 13:912947 (20 pages), 2022 (DOI)
  12. J. H. Lee and B. E. Griffith. On the Lagrangian-Eulerian coupling in the immersed finite element/difference method. J Comput Phys, 457:111042 (23 pages), 2022 (DOI, arXiv)
  13. A. Barrett, A. L. Fogelson, and B. E. Griffith. A hybrid semi-Lagrangian cut cell method for advection-diffusion problems with Robin boundary conditions in moving domains. J Comput Phys, 449:110805 (18 pages), 2022 (DOI, arXiv)
  14. E. M. Kolahdouz, A. P. S. Bhalla, L. N. Scotten, B. A. Craven, and B. E. Griffith. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. J Comput Phys, 443:110442 (33 pages), 2021 (DOI, arXiv)
  15. R. Bale, A. P. S. Bhalla, B. E. Griffith, and M. Tsubokura. A one-sided direct forcing immersed boundary method using moving least squares. J Comput Phys, 440:110359 (28 pages), 2021 (DOI, arXiv)
  16. S. Qadeer and B. E. Griffith. The smooth forcing extension method: A high-order technique for solving elliptic equations on complex domains. J Comput Phys, 439:110390 (13 pages), 2021 (DOI, arXiv)
  17. J. H. Lee, L. N. Scotten, R. Hunt, T. G. Caranasos, J. P. Vavalle, and B. E. Griffith. Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study. JTCVS Open, 6:60-81, 2021 (Open Access Publication, DOI)
  18. C. Puelz, Z. Danial, J. Marinaro, J. S. Raval, B. E. Griffith, and C. S. Peskin. Models for plasma kinetics during simultaneous therapeutic plasma exchange and extracorporeal membrane oxygenation. Math Med Biol, 38(2):255–271, 2021 (DOI, arXiv)
  19. K. Thomas, T. Henley, S. Rossi, M. J. Costello, W. Polacheck, B. E. Griffith, and M. Bressan. Adherens junction engagement regulates functional patterning of the cardiac pacemaker cell lineage. Dev Cell, 56(10):1498–1511.e7, 2021 (DOI)
  20. S. I. Heath Richardson, H. Gao, J. Cox, R. Janiczek, B. E. Griffith, C. Berry, and X. Y. Luo. A poroelastic immersed finite element framework for modeling cardiac perfusion and fluid-structure interaction. Int J Numer Meth Biomed Eng, 37(5):e3446 (22 pages), 2021 (DOI)
  21. J. Qin, E. M. Kolahdouz, and B. E. Griffith. An immersed interface-lattice Boltzmann method for fluid-structure interaction. J Comput Phys, 428:109807 (20 pages), 2021 (DOI, arXiv)
  22. C. Puelz, J. L. Marinaro, Y. A. Park, B. E. Griffith, C. S. Peskin, and J. S. Raval. Mathematical modeling of the impact of recirculation on exchange kinetics in tandem extracorporeal membrane oxygenation and therapeutic plasma exchange. J Clin Apher, 36(1):6–11, 2021 (DOI)
  23. B. Vadala-Roth, S. Acharya, N. A. Patankar, S. Rossi, and B. E. Griffith. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity. Comput Methods Appl Mech Eng, 365:112978 (48 pages), 2020 (DOI, arXiv)
  24. J. H. Lee, A. D. Rygg, E. M. Kolahdouz, S. Rossi, S. M. Retta, N. Duraiswamy, L. N. Scotten, B. A. Craven, and B. E. Griffith. Fluid-structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator. Ann Biomed Eng, 48(5):1475–1490, 2020 (Open Access Publication, Supplemental Material, DOI, engrXiv)
  25. C. Puelz and B. E. Griffith. A sharp interface method for an immersed viscoelastic solid. J Comput Phys, 409:109217 (25 pages), 2020 (DOI, arXiv)
  26. K. J. Lee, C. T. Gruninger, K. M. Lodaya, S. Qadeer, B. E. Griffith, and J. L. Dempsey. Analysis of multielectron, multistep homogeneous catalysis by rotating disc electrode voltammetry: Theory, application, and obstacles. Analyst, 145(4):1258–1278, 2020 (DOI)
  27. E. M. Kolahdouz, A. P. S. Bhalla, B. A. Craven, and B. E. Griffith. An immersed interface method for discrete surfaces. J Comput Phys, 400:108854 (37 pages), 2020 (DOI, arXiv)
  28. B. E. Griffith and N. A. Patankar. Immersed methods for fluid-structure interaction. Annu Rev Fluid Mech, 52:421–448, 2020 (DOI)
  29. L. Feng, H. Gao, B. E. Griffith, S. A. Niederer, and X. Y. Luo. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. Int J Numer Meth Biomed Eng, 35(11):e3254 (23 pages), 2019 (DOI)
  30. S. Sherifova, G. Sommer, C. Viertler, P. Regitnig, T. Caranasos, M. A. Smith, B. E. Griffith, R. W. Ogden, and G. A. Holzapfel. Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas with a focus on the media. Acta Biomater, 99:443–456, 2019 (DOI)
  31. N. Nangia, B. E. Griffith, N. A. Patankar, A. P. S. Bhalla. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows. J Comput Phys, 390:548–594, 2019 (DOI, arXiv)
  32. S. G. Smith, B. E. Griffith, and D. A. Zaharoff. Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry. Math Med Biol, 36(2):139–156, 2019 (DOI)
  33. T. Dombrowski, S. Jones, A. P. S. Bhalla, G. Katsikis, B. E. Griffith, and D. Klotsa. Transition in swimming direction in a model self-propelled inertial swimmer. Phys Rev Fluid, 4, 021101(R) (9 pages), 2019 (DOI, arXiv)
  34. L. Feng, N. Qi, H. Gao, W. Sun, M. Vazquez, B. E. Griffith, and X. Y. Luo. On the chordae structure and dynamic behaviour of the mitral valve. IMA J Appl Math, 83(6):1066–1091, 2018 (DOI)
  35. W. Lee, Y. Kim, B. E. Griffith, and S. Lim. Bacterial flagellar bundling and unbundling via polymorphic transformations. Phys Rev E, 98:052405 (12 pages), 2018 (DOI)
  36. S. Rossi, S. Gaeta, B. E. Griffith, and C. S. Henriquez. Muscle thickness and curvature influence atrial conduction velocities. Front Physiol, 9:1344 (15 pages), 2018 (DOI)
  37. B. E. Griffith and X. Y. Luo. Hybrid finite difference/finite element version of the immersed boundary method. Int J Numer Meth Biomed Eng, 33(11):e2888 (31 pages), 2017 (DOI, arXiv)
  38. W. Kou, B. E. Griffith, J. E. Pandolfino, P. J. Kahrilas, and N. A. Patankar. A continuum mechanics-based musculo-mechanical model for esophageal transport. J Comput Phys, 348:433–459, 2017 (DOIarXiv)
  39. Y. Bao, A. Donev, B. E. Griffith, D. M. McQueen, and C. S. Peskin. An immersed boundary method with divergence-free velocity interpolation. J Comput Phys, 347:183–206, 2017 (DOIarXiv)
  40. H. Gao, L. Feng, N. Qi, C. Berry, B. E. Griffith, and X. Y. Luo. A coupled mitral valve-left ventricle model with fluid-structure interaction. Med Eng Phys, 47:128–136, 2017 (DOI, arXiv)
  41. A. Hasan, E. M. Kolahdouz, A. Enquobahrie, T. G. Caranasos, J. P. Vavalle, and B. E. Griffith. Image-based immersed boundary model of the aortic root. Med Eng Phys, 47:72–84, 2017 (DOI, arXiv)
  42. S. Rossi and B. E. Griffith. Incorporating inductances in tissue-scale models of cardiac electrophysiology. Chaos, 27:093926 (18 pages), 2017 (DOIarXiv)
  43. A. P. Hoover, B. E. Griffith, and L. A. Miller. Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model. J Fluid Mech, 813:1112–1155, 2017 (DOI)
  44. F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. P. S. Bhalla, B. E. Griffith, and A. Donev. Hydrodynamics of suspensions of passive and active rigid particles: A rigid multiblob approach. Comm Appl Math Comput Sci, 11(2):217–296, 2016 (DOI, arXiv)
  45. S. K. Jones, Y. J. Yun, T. L. Hedrick, B. E. Griffith, and L. A. Miller. Bristles reduce the force required to ‘fling’ wings apart in the smallest insects. J Exp Biol, 219:3759–3772, 2016 (DOI)
  46. E. D. Tytell, M. C. Leftwich, C.-Y. Hsu, B. E. Griffith, A. H. Cohen, A. J. Smits, C. Hamlet, and L. J. Fauci. The role of body stiffness in undulatory swimming: Insights from robotic and computational models. Phys Rev Fluids, 1:073202 (17 pages), 2016 (DOI)
  47. G. Sommer, S. Sherifova, P. J. Oberwalder, O. E. Dapunt, P. A. Ursomanno, A. DeAnda, B. E. Griffith, and G. A. Holzapfel. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J Biomech, 49(12):2374–2382, 2016 (DOI)
  48. V. Flamini, A. DeAnda, and B. E. Griffith. Immersed boundary-finite element model of fluid-structure interaction in the aortic root. Theor Comput Fluid Dynam, 30(1):139–164, 2016 (DOI, arXiv)
  49. B. Kallemov, A. P. S. Bhalla, B. E. Griffith, and A. Donev. An immersed boundary method for rigid bodies. Comm Appl Math Comput Sci, 11(1):79–141, 2016 (DOI, arXiv)
  50. S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M. Favino, T. E. Fastl, T. Fritz, H. Gao, A. Gizzi, B. E. Griffith, D. E. Hurtado, R. Krause, X. Y. Luo, M. P. Nash, S. Pezzuto, G. Plank, S. Rossi, D. Ruprecht, G. Seemann, N. P. Smith, J. Sundnes, J. J. Rice, N. Trayanova, D. Wang, Z. J. Wang, and S. A. Niederer. Verification of cardiac mechanics software: Benchmark problems and solutions for testing active and passive material behaviour. Proc R Soc A, 471(2184):20150641 (20 pages), 2015 (DOI)
  51. S. K. Jones, R. Laurenza, T. L. Hedrick, B. E. Griffith, and L. A. Miller. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. J Theor Biol. 384:105–120, 2015 (DOI)
  52. A. Kheradvar, E. M. Groves, A. Falahatpisheh, M. R. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, C. J. Goergen, F. Baaijens, S. H. Little, S. Canic, and B. Griffith. Emerging trends in heart valve engineering: Part IV. Computational modeling and experimental studies. Ann Biomed Eng. 43(10):2314–2333, 2015 (DOI)
  53. W. Kou, A. P. S. Bhalla, B. E. Griffith, J. E. Pandolfino, P. J. Kahrilas, and N. A. Patankar. A fully resolved active musculo-mechanical model for esophageal transport. J Comput Phys, 298:446–465, 2015 (DOI, arXiv)
  54. R. D. Guy, B. Phillip, and B. E. Griffith. Geometric multigrid for an implicit-time immersed boundary method. Adv Comput Math, 41(3):636–662, 2015 (DOI, arXiv)
  55. A. Kheradvar, E. M. Groves, C. A. Simmons, B. Griffith, S. H. Alavi, R. Tranquillo, L. P. Dasi, A. Falahatpisheh, K. J. Grande-Allen, C. J. Goergen, M. R. K. Mofrad, F. Baaijens, S. Canic, and S. H. Little. Emerging trends in heart valve engineering: Part III. Novel technologies for mitral valve repair and replacement. Ann Biomed Eng, 43(4):858–870, 2015 (DOI)
  56. A. Kheradvar, E. M. Groves, C. J. Goergen, S. H. Alavi, R. Tranquillo, C. A. Simmons, L. P. Dasi, K. J. Grande-Allen, M. R. K. Mofrad, A. Falahatpisheh, B. Griffith, F. Baaijens, S. H. Little, and S. Canic. Emerging trends in heart valve engineering: Part II. Novel and standard technologies for aortic valve replacement. Ann Biomed Eng, 43(4):844–857, 2015 (DOI)
  57. A. Kheradvar, E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, C. A. Simmons, B. Griffith, A. Falahatpisheh, C. J. Goergen, M. R. K. Mofrad, F. Baaijens, S. H. Little, and S. Canic. Emerging trends in heart valve engineering: Part I. Solutions for future. Ann Biomed Eng, 43(4):833–843, 2015 (DOI)
  58. S. Delong, Y. Sun, B. E. Griffith, E. Vanden-Eijnden, and A. Donev. Multiscale temporal integrators for fluctuating hydrodynamics. Phys Rev E, 90(6):063312 (23 pages), 2014 (DOI, arXiv)
  59. H. Gao, X. S. Ma, N. Qi, C. Berry, B. E. Griffith, and X. Y. Luo. A finite strain model of the human mitral valve with fluid structure interaction. Int J Numer Meth Biomed Eng, 30(12):1597–1613, 2014 (DOI)
  60. H. Gao, H. M. Wang, C. Berry, X. Y. Luo, and B. E. Griffith. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Int J Numer Meth Biomed Eng, 30(11):1199–1222, 2014 (DOI)
  61. M. Cai, A. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev. Efficient variable-coefficient finite-volume Stokes solvers. Comm Comput Phys, 16(5):1263–1297, 2014 (DOI, arXiv)
  62. H. Gao, D. Carrick, C. Berry, B. E. Griffith, and X. Y. Luo. Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J Appl Math, 79(5):978–1010, 2014 (DOI)
  63. T. G. Fai, B. E. Griffith, Y. Mori, and C. S. Peskin. Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers II: Theory. SIAM J Sci Comput, 36(3):B589–B621, 2014 (DOI)
  64. S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Brownian dynamics without Green’s functions. J Chem Phys, 140(13):134110 (23 pages), 2014 (DOI, arXiv)
  65. F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Inertial Coupling Method for particles in an incompressible fluctuating fluid. Comput Meth Appl Mech Eng, 269:139–172, 2014 (DOI, arXiv)
  66. H. M. Wang, X. Y. Luo, H. Gao, R. W. Ogden, B. E. Griffith, and C. Berry. A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole. Biomechan Model Mechanobiol, 13(1):99–113, 2014 (DOI)
  67. A. P. S. Bhalla, R. Bale, B. E. Griffith, and N. A. Patankar. Fully resolved immersed electrohydrodynamics for particle motion, electrolocation, and self-propulsion. J Comput Phys, 256:88–108, 2014 (DOI)
  68. A. P. S. Bhalla, B. E. Griffith, N. A. Patankar, and A. Donev. A minimally-resolved immersed boundary model for reaction-diffusion problems. J Chem Phys, 139(21):214112 (15 pages), 2013 (DOI, arXiv)
  69. B. E. Griffith and C. S. Peskin. Electrophysiology. Comm Pure Appl Math, 66(12):1837–1913, 2013 (DOI)
  70. T. G. Fai, B. E. Griffith, Y. Mori, and C. S. Peskin. Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers I: Numerical method and results. SIAM J Sci Comput, 35(5):B1132–B1161, 2013 (DOI) (Erratum: DOI)
  71. A. P. S. Bhalla, R. Bale, B. E. Griffith, and N. A. Patankar. A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies. J Comput Phys, 250:446–476, 2013 (DOI)
  72. A. P. S. Bhalla, B. E. Griffith, and N. A. Patankar. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming. PLOS Comput Biol, 9(6):e100309 (16 pages), 2013 (DOI)
  73. S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev. Temporal integrators for fluctuating hydrodynamics. Phys Rev E, 87(3):033302 (22 pages), 2013 (DOI, arXiv)
  74. X. S. Ma, H. Gao, B. E. Griffith, C. Berry, and X. Y. Luo. Image-based fluid-structure interaction model of the human mitral valve. Comput Fluid, 71:417–425, 2013 (DOI)
  75. H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, and T. J. Wang. Structure-based finite strain modelling of the human left ventricle in diastole. Int J Numer Meth Biomed Eng, 29(1):83–103, 2013 (DOI)
  76. F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. Fai, B. E. Griffith, and C. S. Peskin. Staggered schemes for fluctuating hydrodynamics. Multiscale Model Simul, 10(4):1369–1408, 2012 (DOI, arXiv)
  77. B. E. Griffith and S. Lim. Simulating an elastic ring with bend and twist by an adaptive generalized immersed boundary method. Comm Comput Phys, 12(2):433–461, 2012 (DOI)
  78. B. E. Griffith. On the volume conservation of the immersed boundary method. Comm Comput Phys, 12(2):401–432, 2012 (DOI)
  79. X. Y. Luo, B. E. Griffith, X. S. Ma, M. Yin, T. J. Wang, C. L. Liang, P. N. Watton, and G. M. Bernacca. Effect of bending rigidity in a dynamic model of a polyurethane prosthetic mitral valve. Biomech Model Mechanobiology, 11(6):815–827, 2012 (DOI)
  80. B. E. Griffith. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Meth Biomed Eng, 28(3):317–345, 2012 (DOI, arXiv) (Erratum: DOI. The published version of this paper includes significant typographical errors that were introduced by the publisher following the proofing process; these errors do not appear in the arXiv reprint)
  81. P. E. Hand and B. E. Griffith. Empirical study of an adaptive multiscale model for simulating cardiac conduction. Bull Math Biol, 73(12):3071–3089, 2011 (DOI)
  82. P. E. Hand and B. E. Griffith. Adaptive multiscale model for simulating cardiac conduction. Proc Natl Acad Sci U S A, 107(33):14603–14608, 2010 (DOI)
  83. P. Lee, B. E. Griffith, and C. S. Peskin. The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement. J Comput Phys, 229(13):5208–5227, 2010 (DOI)
  84. B. E. Griffith. An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner. J Comput Phys, 228(20):7565–7595, 2009 (DOI)
  85. P. E. Hand, B. E. Griffith, and C. S. Peskin. Deriving macroscopic myocardial conductivities by homogenization of microscopic models. Bull Math Biol, 71(7):1707–1726, 2009 (DOI)
  86. B. E. Griffith, X. Y. Luo, D. M. McQueen, and C. S. Peskin. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech, 1(1):137–177, 2009 (DOI)
  87. B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin. An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys, 223(1):10–49, 2007 (DOI)
  88. B. E. Griffith and C. S. Peskin. On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. J Comput Phys, 208(1):75–105, 2005 (DOI)
  89. S. J. Cox and B. E. Griffith. Recovering quasi-active properties of dendritic neurons from dual potential recordings. J Comput Neurosci, 11(2):95–110, 2001 (DOI)
  90. L. J. Gray and B. E. Griffith. A faster Galerkin boundary integral algorithm. Comm Numer Meth Eng, 14(12):1109–1117, 1998 (DOI)

Book chapters

  1. W. Sun, W. Mao, and B. E. Griffith. Computer modeling and simulation of heart valve function and intervention. In A. Kheradvar, editor, Principles of Heart Valve Engineering, pages 177–211. Academic Press, Cambridge, MA, USA, 2019 (DOI)
  2. D. M. McQueen, T. O’Donnell, B. E. Griffith, and C. S. Peskin. Constructing a Patient-Specific Model Heart from CT Data. In N. Paragios, N. Ayache, and J. Duncan, editors, Handbook of Biomedical Imaging, pages 183–197. Springer-Verlag, New York, NY, USA, 2015 (DOI)
  3. T. Skorczewski, B. E. Griffith, and A. L. Fogelson. Multi-bond models for platelet adhesion and cohesion. In S. D. Olson and A. T. Layton, editors, Biological Fluid Dynamics: Modeling, Computation, and Applications, Contemporary Mathematics, pages 149–172. American Mathematical Society, Providence, RI, USA, 2014 (DOI)
  4. B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin. Parallel and adaptive simulation of cardiac fluid dynamics. In M. Parashar and X. Li, editors, Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, pages 105–130. John Wiley and Sons, Hoboken, NJ, USA, 2009 (DOI)

Editorial

  1. A. DeAnda, K. Rajagopal, and B. E. Griffith. Commentary: Diameter and Wall Stress – Wrong Laplace, Wrong Time? J Thorac Cardiovasc Surg, 164(5):1376–1377, 2022 (DOI)
  2. K. Rajagopal, B. E. Griffith, and A. DeAnda. Reply: The stresses of cardiovascular mechanics. J Thorac Cardiovasc Surg, 159(3):e158–e159, 2020 (DOI)
  3. K. Rajagopal, B. E. Griffith, and A. DeAnda. The mechanics of acute aortic dissection: Measured calculations and calculated measures. J Thorac Cardiovasc Surg, 158(2):366–367, 2019 (DOI)

Refereed conference proceedings and abstracts

  1. H. Gao, N. Qi, X. S. Ma, B. E. Griffith, C. Berry, and X. Y. Luo. Fluid-structure interaction model of human mitral valve within left ventricle. In H. van Assen, P. Bovendeerd, and T. Delhaas, editors, Functional Imaging and Modeling of the Heart: 8th International Conference, FIMH 2015, Maastricht, The Netherlands, June 25–27, 2015, volume 9126 of Lecture Notes in Computer Science, pages 330–337, 2015 (DOI)
  2. A. Ward, S. Maddalo, S. Lavallee, V. Flamini, A. DeAnda, and B. Griffith. Influence of anti-hypertensive medications on aortic peak stress. Circulation, 130:A17405, 2014
  3. B. E. Griffith, V. Flamini, A. DeAnda, and L. Scotten. Simulating the dynamics of an aortic valve prosthesis in a pulse duplicator: Numerical methods and initial experience. J Med Dev, 7(4):040912 (2 pages), 2013 (DOI)
  4. S. L. Maddalo, A. Ward, V. Flamini, B. Griffith, P. Ursomanno, and A. DeAnda. Antihypertensive strategies in the management of aortic disease. J Am Coll Surg, 217(3):S39, 2013 (DOI)
  5. H. Gao, B. E. Griffith, D. Carrick, C. McComb, C. Berry, and X. Y. Luo. Initial experience with a dynamic imaging-derived immersed boundary model of human left ventricle. In S. Ourselin, D. Rueckert, and N. Smith, editors, Functional Imaging and Modeling of the Heart: 7th International Conference, FIMH 2013, London, UK, June 20–22, 2013, volume 7945 of Lecture Notes in Computer Science, pages 11–18, 2013 (DOI)

Other conference publications

  1. V. Flamini, A. DeAnda, and B. E. Griffith. Simulating the effects of intersubject variability in aortic root compliance by the immersed boundary method. In P. Nithiarasu, R. Lohner, and K. M. Liew, editors, Proceedings of the Third International Conference on Computational & Mathematical Biomedical Engineering, 2013
  2. X. S. Ma, H. Gao, N. Qi, C. Berry, B. E. Griffith, and X. Y. Luo. Image-based immersed boundary/finite element model of the human mitral valve. In P. Nithiarasu, R. Lohner, and K. M. Liew, editors, Proceedings of the Third International Conference on Computational & Mathematical Biomedical Engineering, 2013

Other non-refereed works

  1. S. J. Cox and B. E. Griffith. A fast, fully implicit backward Euler solver for dendritic neurons. Technical report, Department of Computational and Applied Mathematics, Rice University, 2000. Technical Report TR00-32

PhD Theses

  1. J. A. Brown. Modeling Transcatheter Aortic Valve Replacement in Patient-Specific Anatomies: Fluid-Structure Interaction Models Using the Immersed Finite Element-Difference Method. PhD thesis, University of North Carolina at Chapel Hill, 2023
  2. K. H. Kim. Immersed Peridynamics Method. PhD thesis, University of North Carolina at Chapel Hill, 2023
  3. R. Hunt. Part I: Diffusion-Induced Flows and Particulate Aggregation. Part II: Experiments and Modeling Of Replacement Aortic Valves. Part III: Enhanced Diffusion In Wall-Driven Shear Flows. PhD thesis, University of North Carolina at Chapel Hill, 2021
  4. B. Vadala-Roth. Stabilization of the Hybrid Immersed Boundary Method. PhD thesis, University of North Carolina at Chapel Hill, 2020
  5. F. Fang. Numerical Advances for Fluid-Structure Interactions in Entangled Polymer Solutions with Applications to Active Microbead Rheology. PhD thesis, University of North Carolina at Chapel Hill, 2020
  6. J. H. Lee. Simulating In Vitro Models of Cardiovascular Fluid-Structure Interaction: Methods, Models, and Applications. PhD thesis, University of North Carolina at Chapel Hill, 2020
  7. Y. Lai. Multigrid methods for the bidomain equations. PhD thesis, University of North Carolina at Chapel Hill, 2019
  8. A. Barrett. An adaptive viscoelastic fluid solver: Formulation, verification, and applications to fluid-structure interaction. PhD thesis, University of North Carolina at Chapel Hill, 2019
  9. B. E. Griffith. Simulating the blood-muscle-valve mechanics of the heart by an adaptive and parallel version of the immersed boundary method. PhD thesis, Courant Institute of Mathematical Sciences, New York University, 2005