Skip to main content

Congratulations to Dr. Aaron Barrett!

June 24, 2019

Congratulations to Aaron Barrett for successfully defending his thesis, An Adaptive Viscoelastic Fluid Solver: Formulation, Verification, and Applications to Fluid-Structure Interaction! Aaron is off to a postdoctoral position at the University of Utah in July.

Yanni Lai completes her oral exam

May 15, 2019

Congratulations to Yanni Lai, who successfully completed her oral qualifying exam on multigrid methods for models of cardiac electrophysiology!

Mike’s paper is on the engrXiv

February 15, 2019

Mike’s paper, Fluid-structure interaction models of bioprosthetic heart valves: Initial in vitro experimental validation, is now available on the engrXiv. This paper uses the hyperelastic immersed boundary method to simulate the dynamics of bioprosthetic heart valves (BHVs) in models of experimental pulse duplicator systems. An initial experimental validation of the models is demonstrated through comparisons to data on pressures, flow rates, and leaflet kinematics. The paper also contrasts the flow patterns and leaflet strains and stresses generated by porcine tissue and bovine pericardial BHVs.

Mike Lee completes his oral exam

February 12, 2019

Congratulations to Mike Lee, who successfully completed his oral qualifying exam on fluid-structure interaction models of bioprosthetic heart valves and in vitro validation of computational models of cardiovascular fluid dynamics!

Charles’ paper is on the arXiv

February 8, 2019

Charles’ paper, A sharp interface method for an immersed viscoelastic solid, is now available on the arXiv. This paper develops an extension of the hyperelastic immersed boundary method that sharply resolves pressure discontinuities at fluid-structure interfaces by modifying the definition of the elastic stress tensor associated with the hyperelastic material response. Unlike most other sharp-interface immersed boundary methods, however, this approach allows us to use standard discretization methods that are “oblivious” to the presence of the pressure discontinuity. Numerical tests show the impact of the method on the accuracy of the overall scheme, and an approach is developed that allows us to compute the splitting efficiently.

Amin’s paper is on the arXiv

December 20, 2018

Amin’s paper, An immersed interface method for faceted surfaces, is now available on the arXiv. This paper develops an extension of the immersed interface method (IIM) that is specialized to faceted surfaces (arising, for instance, from finite element structural models). It also establishes through extensive numerical examples that IIMs that use only the lowest-order jump conditions (for the pressure and viscous shear stress) at immersed interfaces are able to yield global second-order convergence rates.

Postdoctoral positions

November 19, 2018

We expect to have one or more postdoctoral openings with start dates in 2019. For more details, see the Positions page of this site.

Ben’s paper is on the arXiv

November 19, 2018

Ben’s paper, Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity, is now available on the arXiv. We propose a simple stabilization that resembles approaches from nearly incompressible solid mechanics to improve the volume conservation of the immersed boundary method, as demonstrated by its performance in widely used benchmark problems of incompressible hyperelasticity adapted from the solid mechanics literature.

New award on modeling IVC filters with the FDA

September 7, 2018

We are trilled to announce that we just received notification of a new $160K research award on developing models of IVC filters through the NSF/FDA Scholar-in-Residence at the FDA program. This project is in collaboration with Brent Craven in the Division of Applied Mechanics in the Center for Devices and Radiological Health at the FDA.